Package: faux 1.2.1.9002

faux: Simulation for Factorial Designs

Create datasets with factorial structure through simulation by specifying variable parameters. Extended documentation at <https://debruine.github.io/faux/>. Described in DeBruine (2020) <doi:10.5281/zenodo.2669586>.

Authors:Lisa DeBruine [aut, cre], Anna Krystalli [ctb], Andrew Heiss [ctb]

faux_1.2.1.9002.tar.gz
faux_1.2.1.9002.zip(r-4.5)faux_1.2.1.9002.zip(r-4.4)faux_1.2.1.9002.zip(r-4.3)
faux_1.2.1.9002.tgz(r-4.4-any)faux_1.2.1.9002.tgz(r-4.3-any)
faux_1.2.1.9002.tar.gz(r-4.5-noble)faux_1.2.1.9002.tar.gz(r-4.4-noble)
faux_1.2.1.9002.tgz(r-4.4-emscripten)faux_1.2.1.9002.tgz(r-4.3-emscripten)
faux.pdf |faux.html
faux/json (API)
NEWS

# Install 'faux' in R:
install.packages('faux', repos = c('https://debruine.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/debruine/faux/issues

Datasets:
  • faceratings - Attractiveness ratings of faces
  • fr4 - Attractiveness rating subset

On CRAN:

datasimulation

9.73 score 94 stars 2 packages 656 scripts 1.4k downloads 73 exports 39 dependencies

Last updated 9 months agofrom:587276fda5. Checks:OK: 3 ERROR: 2 NOTE: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 10 2024
R-4.5-winERRORNov 10 2024
R-4.5-linuxERRORNov 10 2024
R-4.4-winNOTENov 10 2024
R-4.4-macNOTENov 10 2024
R-4.3-winOKNov 10 2024
R-4.3-macOKNov 10 2024

Exports:%>%add_betweenadd_contrastadd_randomadd_ranefadd_recodeadd_withinaverage_r2tau_0beta2normbinom2normcheck_designcheck_mixed_designcheck_sim_statscodebookcontr_code_anovacontr_code_differencecontr_code_helmertcontr_code_polycontr_code_sumcontr_code_treatmentconvert_rcormatcormat_from_triangledistfuncsdlikertfaux_optionsfh_boundsfix_name_labelsgamma2normget_coefsget_contrast_valsget_designget_design_longget_paramsgetcolsinteractive_designis_pos_defjson_designlong2widemake_idmessynbinom2normnested_listnorm2betanorm2binomnorm2gammanorm2likertnorm2nbinomnorm2normnorm2poisnorm2truncnorm2unifplikertplot_designpos_def_limitsqlikertreadline_checkrlikertrmultirnorm_multirnorm_presample_from_popset_designsim_designsim_dfsim_joint_distsim_mixed_ccsim_mixed_dfstd_alpha2average_rtrunc2normunif2normunique_pairswide2long

Dependencies:bootclicolorspacedplyrfansifarvergenericsggplot2gluegtableisobandjsonlitelabelinglatticelifecyclelme4magrittrMASSMatrixmgcvminqamunsellnlmenloptrpillarpkgconfigR6RColorBrewerRcppRcppEigenrlangscalestibbletidyselecttruncnormutf8vctrsviridisLitewithr

Codebook Demo

Rendered fromcodebook.Rmdusingknitr::rmarkdownon Nov 10 2024.

Last update: 2021-03-27
Started: 2020-06-23

Continuous Predictors

Rendered fromcontinuous.Rmdusingknitr::rmarkdownon Nov 10 2024.

Last update: 2023-01-29
Started: 2020-07-24

Contrasts

Rendered fromcontrasts.Rmdusingknitr::rmarkdownon Nov 10 2024.

Last update: 2023-02-06
Started: 2021-08-10

NORTA

Rendered fromnorta.Rmdusingknitr::rmarkdownon Nov 10 2024.

Last update: 2023-02-03
Started: 2022-02-13

Simulate by Design

Rendered fromsim_design.Rmdusingknitr::rmarkdownon Nov 10 2024.

Last update: 2023-07-07
Started: 2019-04-29

Simulate Correlated Variables

Rendered fromrnorm_multi.Rmdusingknitr::rmarkdownon Nov 10 2024.

Last update: 2021-03-27
Started: 2019-04-29

Simulate from Existing Data

Rendered fromsim_df.Rmdusingknitr::rmarkdownon Nov 10 2024.

Last update: 2021-08-09
Started: 2019-05-03

Readme and manuals

Help Manual

Help pageTopics
Add between factorsadd_between
Add a contrast to a data frameadd_contrast
Add random factors to a data structureadd_random
Add random effects to a data frameadd_ranef
Recode a categorical columnadd_recode
Add within factorsadd_within
Average r to Random Intercept SDaverage_r2tau_0
Convert beta to normalbeta2norm
Convert binomial to normalbinom2norm
Validates the specified designcheck_design
Get random intercepts for subjects and itemscheck_mixed_design
Create PsychDS Codebook from Datacodebook
Anova code a factorcontr_code_anova
Difference code a factorcontr_code_difference
Helmert code a factorcontr_code_helmert
Polynomial code a factorcontr_code_poly
Sum code a factorcontr_code_sum
Treatment code a factorcontr_code_treatment
Convert r for NORTAconvert_r
Make a correlation matrixcormat
Make Correlation Matrix from Trianglecormat_from_triangle
Get distribution functionsdistfuncs
Likert density functiondlikert
Attractiveness ratings of facesfaceratings
faux: Simulation Functions.faux
Set/get global faux optionsfaux_options
Get Fréchet-Hoefding boundsfh_bounds
Fix name labelsfix_name_labels
Attractiveness rating subsetfr4
Convert gamma to normalgamma2norm
Get Coefficients from Dataget_coefs
Get contrast valuesget_contrast_vals
Get designget_design
Get design from long dataget_design_long
Get parameters from a data tablecheck_sim_stats get_params
Get data columnsgetcols
Set design interactivelyinteractive_design
Check a Matrix is Positive Definiteis_pos_def
Convert design to JSONjson_design
Convert data from long to wide formatlong2wide
Make IDmake_id
Simulate missing datamessy
Convert negative binomial to normalnbinom2norm
Output a nested list in RMarkdown list formatnested_list
Convert normal to betanorm2beta
Convert normal to binomialnorm2binom
Convert normal to gammanorm2gamma
Convert normal to likertnorm2likert
Convert normal to negative binomialnorm2nbinom
Convert normal to normalnorm2norm
Convert normal to poissonnorm2pois
Convert normal to truncated normalnorm2trunc
Convert normal to uniformnorm2unif
Likert distribution functionplikert
Plot designplot.design plot.faux plot_design
Limits on Missing Value for Positive Definite Matrixpos_def_limits
Likert quantile functionqlikert
Check readline inputreadline_check
Random Likert distributionrlikert
Multiple correlated distributionsrmulti
Multiple correlated normal distributionsrnorm_multi
Make a normal vector correlated to existing vectorsrnorm_pre
Sample Parameters from Population Parameterssample_from_pop
Set designset_design
Simulate data from designsim_design
Simulate an existing dataframesim_df
Simulate category joint distributionsim_joint_dist
Generate a cross-classified samplesim_mixed_cc
Generate a mixed design from existing datasim_mixed_df
Standardized Alpha to Average Rstd_alpha2average_r
Convert truncated normal to normaltrunc2norm
Convert uniform to normalunif2norm
Make unique pairs of level names for correlationsunique_pairs
Convert data from wide to long formatwide2long